Multi-scale ensemble modeling of modular proteins with intrinsically disordered linker regions: application to p53.
نویسندگان
چکیده
In eukaryotic proteins, intrinsically disordered regions (IDRs) are ubiquitous and often exist in linker regions that flank the functional domains of modular proteins, regulating their functions. For detailed structural ensemble modeling of IDRs, we propose a multiscale method for IDRs that possess significant long-range order in modular proteins and apply it to the eukaryotic transcription factor p53 as an example. First, we performed all-atom (AA) molecular dynamics (MD) simulations of the explicitly solvated p53 linker region, without experimental restraint terms, finding fractional long-range contacts within the linker. Second, we fed this AA MD ensemble into a coarse-grained (CG) model, finding an optimal set of contact potentials. The optimized CG MD simulations reproduced the contact probability map from the AA MD simulations. Finally, we performed the CG MD simulation of the tetrameric p53 fragments including the core domains, the linker, and the tetramerization domain. Using the obtained ensemble, we theoretically calculated the small angle x-ray scattering (SAXS) profile of this fragment. The obtained SAXS profile agrees well with the experiment. We also found that the long-range contacts in the p53 linker region are required to reproduce the experimental SAXS profile. The developed framework in which we calculate the long-range contact probability map from the AA MD simulation and incorporate it to the CG model can be applied to broad range of IDRs.
منابع مشابه
Long-Range Modulation of Chain Motions within the Intrinsically Disordered Transactivation Domain of Tumor Suppressor p53
The tumor suppressor p53 is a hub protein with a multitude of binding partners, many of which target its intrinsically disordered N-terminal domain, p53-TAD. Partners, such as the N-terminal domain of MDM2, induce formation of local structure and leave the remainder of the domain apparently disordered. We investigated segmental chain motions in p53-TAD using fluorescence quenching of an extrins...
متن کاملQuaternary structures of tumor suppressor p53 and a specific p53 DNA complex.
The homotetrameric tumor suppressor p53 consists of folded core and tetramerization domains, linked and flanked by intrinsically disordered segments that impede structure analysis by x-ray crystallography and NMR. Here, we solved the quaternary structure of human p53 in solution by a combination of small-angle x-ray scattering, which defined its shape, and NMR, which identified the core domain ...
متن کاملDFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences
MOTIVATION Disordered flexible linkers (DFLs) are disordered regions that serve as flexible linkers/spacers in multi-domain proteins or between structured constituents in domains. They are different from flexible linkers/residues because they are disordered and longer. Availability of experimentally annotated DFLs provides an opportunity to build high-throughput computational predictors of thes...
متن کاملModeling Intrinsically Disordered Proteins with Bayesian Statistics
The characterization of intrinsically disordered proteins is challenging because accurate models of these systems require a description of both their thermally accessible conformers and the associated relative stabilities or weights. These structures and weights are typically chosen such that calculated ensemble averages agree with some set of prespecified experimental measurements; however, th...
متن کاملConstructing ensembles for intrinsically disordered proteins.
The relatively flat energy landscapes associated with intrinsically disordered proteins makes modeling these systems especially problematic. A comprehensive model for these proteins requires one to build an ensemble consisting of a finite collection of structures, and their corresponding relative stabilities, which adequately capture the range of accessible states of the protein. In this regard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 107 3 شماره
صفحات -
تاریخ انتشار 2014